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Abstract. 

The aerosol mass spectrometer (AMS), combined with statistical methods such as positive matrix factorization (PMF), has 

greatly advanced the quantification of primary organic aerosol (POA) sources and total secondary organic aerosol (SOA) mass. 

However, the use of thermal vaporization and electron ionization yields extensive thermal decomposition and ionization-

induced fragmentation, which destroy chemical information needed for SOA source apportionment. The recently developed 5 

extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) provides mass spectra of the organic aerosol 

fraction with a linear response to mass and no thermal decomposition or ionization-induced fragmentation. However, the costs 

and operational requirements of online instruments make their use impractical for long-term or spatially dense monitoring 

applications. This challenge was overcome for AMS measurements by measuring re-nebulized water extracts from ambient 

filter samples. Here, we apply the same strategy for EESI-TOF measurements of 1 year of 24-hour filter samples collected 10 

approximately every 4th day throughout 2013 at the NABEL monitoring station at Zurich-Kaserne, an urban site. The nebulized 

water extracts were measured simultaneously with an AMS. The application of positive matrix factorization (PMF) to EESI-

TOF spectra resolved seven factors, which describe water-soluble OA: less and more aged biomass burning aerosol (LABBEESI 

and MABBEESI, respectively), cigarette smoke-related organic aerosol (CS-OAEESI), primary biological organic aerosol 

(PBOAEESI), biogenic secondary organic aerosol (BSOAEESI), and a summer mixed oxygenated organic aerosol (SMOAEESI) 15 

factor. Seasonal trends and relative contributions of the EESI-TOF OA sources were compared with AMS source 

apportionment factors, measured water-soluble ions, cellulose, and meteorological data. Cluster analysis was utilized to 

identify key factor-specific ions based on PMF. Both LABB and MABB contribute strongly during winter. LABB is 

distinguished by very high signals from C6H10O5 (levoglucosan and isomers) and C8H12O6, whereas MABB is characterized 

by a large number of CxHyOz and CxHyOzN species two distinct populations: one with low H:C and high O:C, and the other 20 

with high H:C and low O:C. Two oxygenated summertime SOA sources were attributed to terpene-derived biogenic SOA, a 

major summertime aerosol source in Central Europe. Furthermore, a primary biological organic aerosol factor was identified, 

which was dominated by plant-derived fatty acids and correlated with free cellulose. The CS-OA factor contained a high 

contribution of nicotine and high abundance of organic nitrate ions with low m/z.  

1 Introduction 25 

Organic aerosol (OA) has significant but highly uncertain effects on climate and human health. OA is either directly emitted 

(primary organic aerosol, POA) or formed in the atmosphere by gas-phase oxidation of anthropogenic and natural volatile 

organic compounds, followed by condensation or nucleation of less volatile products (secondary organic aerosol, SOA). The 

Aerodyne aerosol mass spectrometer (AMS) provides online measurements of OA composition and in combination with 

statistical methods such as positive matrix factorization (PMF) has greatly advanced the quantification of primary organic 30 

aerosol (POA) sources and total secondary organic aerosol (SOA) mass (Jimenez et al., 2003; DeCarlo et al., 2008; Lanz et 

al., 2007; Ulbrich et al., 2009; Crippa et al., 2013a; Elser et al., 2016; Zhang et al., 2011). However, the AMS cost and 
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operational requirements make its use impractical for long-term or spatially dense monitoring applications. A few solutions 

were developed to overcome these shortcomings, e.g. the robust, less expensive, Aerosol Chemical Speciation Monitor 

(ACSM, Ng et al., 2011) and the Time of Flight (TOF)-ACSM were developed for long-term campaigns (Fröhlich et al., 2013, 

2015), however, the low mass resolution of these instruments reduces their utility. Traditional offline techniques like gas 

chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) are chemically highly 5 

specific, but measure only a fraction the total organic aerosol. Another solution to this problem is the application of online 

instrumentation to extracted and re-aerosolized material from particle filter samples routinely collected at ambient monitoring 

stations (Daellenbach et al., 2016). Compared to online measurements, there are a few advantages: (1) practicality of long-

term measurements; (2) practicality of making simultaneous measurements across multiple sites (possibly including sites 

where access or infrastructure restrictions make the deployment of high-end instrumentation  challenging); (3) such multi-site 10 

measurements can be performed with not only the same instrument type but actually a single instrument, improving 

comparability; (4) capability of particle composition measurement outside the size-dependent transmission range of the 

measuring instrument (e.g. coarse-mode particles in the AMS). On the other hand, drawbacks of the filter sampling and offline 

measurement strategy include possible positive / negative artifacts due to condensation/evaporation of semi-volatile organics 

or aging during sampling, while compound dependent extraction efficiencies makes quantification more challenging.  15 

The general analytical strategy outlined above, specifically the application of online instrumentation capable of highly time-

resolved measurements to offline analysis of collected samples, has two key advantages relative to traditional offline 

techniques. First, the entire OA fraction can be analysed in comparison to the extracted one for the off-line analysis (64 %-

76 % in the case of Switzerland (Daellenbach et al., 2016)). Second, sources that are tightly correlated on the 24-hr timescales 

typical of filter measurement techniques may be more easily resolved at higher time-resolution; real-world source profiles 20 

from online measurements can therefore be used in advanced factor analysis of offline techniques to improve source separation 

(Daellenbach et al., 2016; Bozzetti et al., 2017).  

While the offline-AMS technique has proven successful in characterizing POA sources and SOA mass, the AMS chemical 

resolution is limited by substantial thermal decomposition and ionization-induced fragmentation of the analyte molecules. This 

problem is especially severe for the highly oxygenated, multifunctional molecules prevalent in SOA, and in most cases, 25 

prevents identification of source-specific SOA factors. In contrast, the recently developed extractive electrospray ionization 

time-of-flight mass spectrometer (EESI-TOF) is capable of online measurements at high time resolution without thermal 

decomposition or ionization-induced fragmentation (Lopez-Hilfiker et al., 2019). The EESI-TOF has been successfully 

deployed in several laboratory (Pospisilova et al., submitted) and field (Qi et al., 2019; Stefenelli et al., 2019) campaigns. It 

yields signals that are linear with mass (albeit with ion-dependent response factors), making it suitable for source 30 

apportionment.  

Here we present the first offline-EESI-TOF source apportionment analysis, conducted on one year of PM10 filter samples 

collected in Zurich, Switzerland, and complemented by AMS measurements. This analysis describes the sources and processes 

governing the water-soluble fraction of OA. The chosen site is very well characterized, with multiple source apportionment 
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studies by online measurements with an AMS in different seasons (Lanz et al. 2010),  an ACSM during a full year (Canonaco 

et al., 2013; Canonaco et al., 2015), and an EESI-TOF during summer and winter (Qi et al., 2019; Stefenelli et al., 2019), as 

well as offline measurements with an AMS and 14C analyses (Daellenbach et al., 2016, 2017; Zotter et al., 2014). 

 

2 Methods 5 

2.1 Site description and sample collection 

Sampling was conducted at the NABEL station in Zurich (47 º 22 ’N, 8 º 33 ’E), described in detail elsewhere (Canonaco et 

al., 2013; Lanz et al., 2007). Briefly, this station is an urban location, situated in the Kaserne Park in the city centre. In addition 

to sources characteristic of urban areas, local influences from nearby restaurants, traffic, and human activities (e.g. cigarette 

smoking) are sometimes observed (Qi et al., 2019; Stefenelli et al., 2019). Meteorological parameters including temperature, 10 

relative humidity (RH), wind speed (WS), wind direction (WD), and global radiation, as well as concentrations of gas-phase 

species, including sulfur dioxide (SO2), nitrogen dioxide (NO2), and nitrogen oxide (NO) are recorded by the monitoring 

station. 

PM10 samples (91 filters) were collected every fourth day for 24 h throughout the year 2013 on quartz fiber filters (14.7 cm 

diameter) using high-volume samplers (500 L min-1). Before sampling, the filters were pre-baked at 800 °C for 8 h. After 15 

collection, filters were wrapped in aluminum foil or lint-free paper, sealed in polyethylene bags and stored at -20 °C. Field 

blanks were collected and stored following the same procedure (Bozzetti et al., 2017; Daellenbach et al., 2017). 

2.2 Offline measurements 

The filters used for the present analysis were investigated by offline-AMS PMF in a previous study (Daellenbach et al., 2017). 

Here, to optimize comparison between the offline-AMS and offline-EESI-TOF techniques, we produced a new aerosol extract, 20 

which was then nebulized for new simultaneous AMS and EESI-TOF measurements. In this way, we avoided differences due 

to extraction or nebulizer performance, filter aging during storage, system background / contamination, handling artifacts, etc., 

which might occur if the current EESI-TOF analyses were to be compared with the original offline-AMS study. As a 

consequence, the AMS dataset presented here is not completely identical to that of Daellenbach et al. (2017), although the 

observed differences are small. 25 

For each analyzed filter sample, one 16-mm diameter filter punch was subjected to ultrasonic extraction in 10 ml of ultrapure 

water (18.2 MΩ cm at 25 °C, total organic carbon (TOC) < 3 ppb) for 20 min at 30 °C. The extracted liquid was then filtered 

with 0.22 µm nylon membrane syringe filters and nebulized in synthetic air (80 % volume N2, 20 % volume O2; Carbagas, 

Gümligen, CH-3073 Switzerland) using a customized Apex Q nebulizer (Elemtental Scientific Inc., Omaha, USA) operating 

at 60 °C. The resulting droplets were dried using a Nafion dryer and then analyzed by an extractive electrospray ionization 30 
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time-of-flight mass spectrometer (EESI-TOF) and a high-resolution time-of-flight AMS (HR-ToF-AMS). Total measurement 

time of each sample was 5 min. Before and after each sample, a measurement blank was generated by sampling nebulized 

ultrapure water for 10 min. Field blanks were measured following the same extraction procedure as the collected filter samples, 

yielding a signal not statistically different from that of nebulized ultrapure water. Each blank sample was recorded for 480 s. 

2.2.1 Offline AMS analysis 5 

The offline AMS analysis followed the methodology developed by Daellenbach et al. (2016). The offline-AMS operation was 

similar to other AMS measurements (Hu et al., 2013;DeCarlo et al., 2006). HR-TOF-AMS data was processed using the 

software SQUIRREL (SeQUential Igor data RetRiEvaL; D. Sueper, University of Colorado, Boulder, CO, USA) v.1.57 and 

PIKA (Peak Integration by Key Analysis) v.1.16 for the IGOR Pro software package (Wavemetrics, Inc., Portland, OR, USA). 

The high resolution mass spectral analysis was performed for each m/z (mass to charge) in the range of 12-120 at AMS V-10 

mode and yielded a dataset consisting of 257 ions (excluding isotopes and CO2-dependent ions). The interference of NH4NO3 

on the CO2
+ signal was corrected (Pieber et al., 2016) as follows:  

𝐶𝑂#,%&'( = 𝐶𝑂#,*&'+ −
-./,0123
4.5,0123 4674.8,9:%&

∙ 𝑁𝑂8,%&'(                                                                                     (1) 

Where the -./,0123
4.5,0123 4674.8,9:%&

 correction factor was determined based on measurement period and varied between 1% and 

~5%. 15 

The AMS data were rescaled to the ambient concentration by normalizing the measured signal to the estimated water-soluble 

organic matter (WSOM) concentration, which was calculated as the product of the measured WSOC multiplied by the OM : 

OC ratios determined from the offline-AMS results. This method and the associated uncertainties are described in detail by 

Daellenbach et al. (2016; 2017). Note that because we do not attempt to correct for the water extraction efficiency of OM 

components, the analysis presented herein describes the source apportionment of AMS WSOM.  20 

 

2.2.2 Extractive Electrospray Ionization Time-of-flight Mass Spectrometer (EESI-TOF) 

The EESI-TOF is discussed in detail elsewhere (Lopez-Hilfiker et al., 2019;Qi et al., 2019), and a brief overview is presented 

here. Aerosol particles are continuously sampled through a 6 mm outer diameter (OD), 5 cm long multi-channel extruded 

carbon denuder housed in a stainless steel tube. The particle flow intersects a spray of charged droplets generated by a 25 

conventional electrospray capillary. Particles collide with the electrospray droplets and the soluble components are extracted. 

The droplets are evaporated gently, yielding ions that are detected by the TOF-MS. The electrospray working solution is a 50 

/ 50 water / methanol (MeOH, UHPLC-MS, LiChrosolv, mixture with 100 ppm NaI (99 %, Sigma-Aldrich) as a charge carrier. 

Organic components are detected as adducts with Na+. Spectra are recorded in positive ion mode at 5 s time resolution. In 

normal operation, the EESI-TOF alternates between direct sampling of aerosol and sampling through a particle filter, to provide 30 
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a background measurement, however, the filter was not used in this study. Instead, the measurement blanks (nebulized 

ultrapure water) were used to determine the background. The EESI-TOF data was processed in Tofware 2.5.7 (Tofwerk AG, 

Thun, Switzerland).  

We report the signal measured by the EESI-TOF in terms of mass flux of ions to the microchannel plate detector (attograms 

s-1 (ag s-1), neglecting the mass of Na+), calculated as shown in Eq. (2).   5 

𝑀> = 𝐼> ∙ (MW> 	− 	MWDD)                                                                                                                                (2) 

Here Mx is the mass flux of ions united in ag s-1, x represents the measured molecular composition. Ix is the recorded signal 

measured by EESI-TOF. MWx and MWcc represent the molecular weight of the ion and the charge carrier (e.g. Na+, H+), 

respectively. Note that this measured mass flux can in principle be related to the ambient OA concentration by the instrument 

flow rate, EESI extraction / ionization efficiency, declustering probability, and ion transmission, where several of these 10 

parameters are ion-dependent and currently unknown (Lopez-Hilfiker et al., 2019). The EESI-TOF data was normalized to 

WSOC by using the AMS OM:OC ratios mentioned above. Similar to the AMS, no corrections for the efficiency of the water 

extraction from the filter samples is applied, and the offline EESI-TOF analysis therefore strictly relates only to the WSOM 

fraction. Note that because online EESI-TOF operation already requires extraction into the spray droplets (1:1 

water:acetonitrile mixture, that major differences between the measured OA fraction between online and offline analyses are 15 

unlikely. A comparison of the EESI-TOF to the AMS signal in terms of total signal or mass, bulk properties, and source 

apportionment results is presented in Section 3.4.  

2.2.3 Other offline measurements 

Organic and elemental carbon (OC, EC) were determined using a thermo-optical transmission method with a Sunset OC-EC 

analyzer, following the EUSAAR-2 thermal-optical transmission protocol (Cavalli et al., 2010). Water-soluble organic carbon 20 

was measured with water extraction followed by catalytic oxidation, and nondispersive infrared detection of CO2 using a total 

organic carbon analyzer. Water-soluble major ions (K+, Na+, Mg2+, Ca2+, and NH4
+ and SO4

2-, NO3
-, and Cl- and methane 

sulfonic acid were determined using ion chromatography (Cuccia et al., 2013). Levoglucosan measurements (Piazzalunga et 

al., 2013) were performed with a high-performance anion exchange chromatographer (HPAEC) with pulsed amperometric 

detection (PAD) using an ion chromatograph (Dionex ICS-1000). Free cellulose was determined using an enzymatic 25 

conversion to D-glucose and subsequent determination of glucose with an HPAEC.  

2.3 Source apportionment techniques 

The EESI-TOF PMF input data matrices included 91 filter samples. The input errors 𝜎GH	were calculated as the uncertainty 

related to ion counting statistics and ion-to-ion signal variability at the detector (δi,j), added in quadrature to the blank variability 

background (𝛽GH) (Qi et al., 2019). 30 
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 𝜎GH = 𝛿GH# + 𝛽GH
#                                                                                                                                             (3) 

We applied a minimum error corresponding to the measurement of 1 ion during the 5 s averaging period. Variables with low 

signal-to-noise (SNR<0.2) were removed, whereas “weak” variables (0.2<SNR<2) were downweighted by a factor of 3 rather 

than 2 (following the recommendations of Paatero and Hopke (2009)). In total, 1070 fitted ions (1068 adducts with Na+ and 2 

with H+) between m/z 135 and 400 were identified. 5 

The PMF source apportionment technique requires as input the time-series of ions from high-resolution mass spectral fitting 

along with their corresponding uncertainties. As for the EESI-TOF, the input AMS errors for PMF were calculated as the sum 

in quadrature of the AMS instrument uncertainties (including ion counting statistics and ion-to-ion signal variability at the 

detector (δi,j)) and the blank variability (𝛽GH) (Ulbrich et al., 2009). 

The offline-EESI-TOF and offline-AMS source apportionment was performed using positive matrix factorization (PMF) 10 

(Paatero and Tapper, 1994) as implemented by the Multilinear Engine (ME-2) and with model configuration and analysis 

executed via the SoFi (Source Finder, version 6.39) interface (Canonaco et al., 2013). PMF is a linear statistical model to 

describe the variability of a multivariate dataset. Specifically, an input data matrix (with elements xi,j, where the i and j indices 

denote time and m/z, respectively) is described as the linear combination of a set of static factor profiles (fi,k, where the k index 

denotes discrete factors) and temporal variation (gk,j), as shown in Eq. (4): 15 

𝑥G,H = (𝑓G,N
9
OPQ ∙ 𝑔N,H) + 𝑒G,H                                                                                                                                  (4) 

Here, ei,j represent elements of the residual matrix and p is the total number of factors.  The PMF algorithm iteratively solves 

Eq. (4) by minimizing the objective function Q, defined in Eq. (5): 

Q = (
&UV
WUV
)#HG                                                                                                                                                       (5) 

σi,j represents entries in the input uncertainty matrix.  20 

The ME-2 implementation of the PMF algorithm offers an efficient exploration of the solution space by allowing the model 

to be directed towards environmentally meaningful rotations. Here this was done by constraining the factor profile elements 

fi,k for one or more factors (Canonaco et al., 2013), implemented using the a-value method, where the output fi,k for each 

constrained factor is required to satisfy Eq. (6): 

 𝑓G,N = 𝑓G,NX 	± 𝑎 ∙ 𝑓G,NX                                                                                                                                                                   (6) 25 

Here f’i,k represents a predetermined anchor profile, and the scalar a (0 ≤ a ≤ 1) determines the tightness of constraint. Anchor 

profiles may be obtained by several methods, including prior studies, laboratory measurements of known sources, or analysis 

of a subset of the current dataset, and are discussed on a case-by-case basis in Sections 3.1 (AMS) and 3.2 (EESI-TOF)  

(Canonaco et al., 2015).  
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2.4 Identification of source-specific ions 

To determine ions characteristic of individual factors (or groups of related factors), agglomerative hierarchical clustering was 

conducted on the EESI-TOF matrix of PMF profiles. A dendrogram is used to show relationships between members of a group. 

A more detailed description is found in Qi et al. (2019).  

Here, we summarize the steps: (1) Calculation of the standardized value (z-score) along the ions by using Eq. (7): 5 

𝑧 = >\]
W

                                                                                                                                    (7) 

The µ is the mean value, s is the standard deviation, Z represents the distance between the raw score and the mean value in 

units of the standard deviation. (2) Formation of groups of the new calculated data by using the Euclidean distance (Eq. 8): 

𝑑𝑖𝑠𝑡 𝑥G, 𝑥H = 	 (
>U0\>V0

s	0
)#b

*PQ                                                                                                                       (8) 

 10 

Here, i = (1,…,m), j = (1,…,m). (3) clustering along the columns (producing row-clustered groups of factor), and along the 

rows (producing the clustered ions to each group). The calculation and the generation of the dendrogram were performed with 

Matlab R2017b. 

3 Results and discussions 

3.1 Interpretation of AMS-PMF factors 15 

Here we summarize the results of the AMS-PMF analysis on the WSOM fraction, which as noted in Section 2.2 are very 

similar to those of Daellenbach et al. (2017), conducted on different extracts from the same ambient filter samples. HOAAMS 

and COAAMS mass profiles were constrained using anchor profiles obtained from winter in Paris (Crippa et al., 2013b) with a-

values of 0.1 and 0.2, respectively. A six-factor solution was selected as the best representation for the AMS PMF analysis, 

yielding factors identified as hydrocarbon-like OA (HOAAMS), cooking OA (COAAMS), biomass burning OA (BBOAAMS), 20 

winter oxygenated OA (WOOAAMS), summer oxygenated OA (AMS), and sulfur-containing OA (SCOAAMS). The methods of 

factor classification and factor selection for the AMS PMF results are similar to Daellenbach et al. (2017), although a detailed 

sensitivity analysis was not repeated. Figures 1 and S1 show the mass spectra and the time series of the AMS factors, 

respectively. The main characteristics of the AMS PMF factors are summarized below. BBOAAMS exhibits high contributions 

from C2H4O2
+ (m/z 60), a characteristic ion from the fragmentation of anhydrosugars such as levoglucosan (Sun et al., 2013; 25 

Takahama et al., 2013; Lin et al., 2016). The BBOAAMS time series shows the expected seasonal variation with elevated 

concentrations in winter, supporting the identification of this factor. The oxygenated OA factors are resolved based on the 

differences in their seasonal behavior: AMS (elevated in summer) and WOOAAMS (elevated in winter). This season-based 

separation of OOA factors is typical of offline AMS analysis (Bozzetti et al., 2016; Daellenbach et al., 2017), but contrasts 

with typical results from PMF analysis of highly time-resolved data from short-term measurements, where OOA factors are 30 
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more likely to be separated by volatility and / or photochemical age (Zhang et al., 2011; Jimenez et al., 2009). Even though 

AMS has a high contribution in summer and shows an increase with rising temperature, it also contributes, to a lesser degree, 

during the other seasons (Fig. S1, (Daellenbach et al., 2017)). The mass spectrum of SCOAAMS is dominated by the fragment 

CH3SO2
+, which was found to derive from a sulfur-containing compound other than methanesulfonic acid (MSA) (Daellenbach 

et al., 2017). This factor is believed to derive from primary traffic related sources, and in size-resolved analyses at other sites 5 

it has been found mainly in the coarse mode (Vlachou et al., 2018). The meteorological data, ions data, and the factor 

comparison between EESI-TOF and AMS are presented in Section 3.2.2. 

3.2 EESI-TOF source apportionment  

3.2.1 EESI-TOF solution selection 

Selection of an appropriate number of factors is a critical component of any PMF analysis. Increasing the number of factors 10 

gives the model more freedom to explain subtle variations of the data, but too many factors may force the model to split a 

physically meaningful factor into non-meaningful ones. In this section, we present how we selected the number of PMF factors 

based on the residual analysis and the solution interpretability. The offline EESI-TOF PMF analysis was performed for 

solutions with 1 to 10 factors. Solutions were assessed based on the internal consistency of the factor mass spectra, and 

comparison of factor time series with offline-AMS PMF solutions, external tracers and auxiliary data. The Q normalized by 15 

its expected value (Q / Qexp) between the various runs was around 2.4 for the six-factor solution and higher (Fig. S2), Here we 

present a brief overview of the retrieved solutions as a function of the number of factors. Characteristics of the factors, 

including justifications for their assigned labels, are presented in Section 3.2.2. 

The 5-factor solution is largely driven by differences between the winter and summer seasons (Fig. S3). The solution includes 

two factors related to biomass combustion. A less aged biomass burning (LABBEESI) factor, dominated by the ion m/z 185.04 20 

(C6H10O5Na+, (C6H10O5, levoglucosan and its isomers). In the following text, the neutral formula is used to represent ions), 

exhibits high contributions over the last few months of the year, while a more aged biomass burning (MABBEESI) is elevated 

during both winters. These two factors are distinguished by their mass spectra, as discussed further in Section 3.2.2. A biogenic 

secondary organic aerosol (BSOAEESI) factor contributes during the warm season and has a negligible contribution from 

C6H10O5. The primary biological organic aerosol (PBOAEESI) factor has a different time series that has no correlation with 25 

other external tracers. The last factor seems to be mixed due to the two major peaks at m/z 163.12 and m/z 185.04. Based on 

the unique ion of m/z 163.12 in the factor mass spectrum, which is tentatively explained by nicotine (C10H15N2
+), we denote it 

here as the “163.12” factor. 

In the 6-factor solution (Fig. S4), the LABBEESI, MABBEESI, BSOAEESI, and PBOAEESI factors are qualitatively similar to their 

counterparts in the 5-factor solution. However, the “163.12” factor is separated into a cigarette smoke-related OA (CS-OAEESI) 30 

factor retaining the prominent peak at 163.12 and a less aged biomass burning factor (LABB2EESI) with a strong contribution 

from C6H10O5 and a high correlation with BBOAAMS.   
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Increasing the number of factors to 7 yields an additional factor, described as summer oxygenated organic aerosol (SMOAEESI), 

which exhibits a high peak in summer but also has a significant contribution throughout the year (Fig. 2). The time series 

correlates with AMS, and the profile is similar to that of photochemically generated, biogenic-dominated SOA identified from 

online measurements at the same site (Stefenelli et al., 2019), as discussed in Section 3.2.2. As discussed in section 3.3, 

SOAAEESI evidences a more regional/mixed composition than BSOAEESI.  5 

When eight factors are assumed, the profile of the new factor points to an additional more aged biomass burning factor 

(MABB2EESI) (Fig. S5) with two high peaks at m/z 165.09 (C7H13NO2) and m/z 185.04 (C6H10O5). Adding this factor alters the 

time series of other factors, decreasing their correlation with relevant tracer. Further, its time series has no clear seasonal trend 

or correlation with other reference, so it does not provide further source information and is therefore disregarded. Increasing 

the number of factors beyond 8 yielded additional split or mixed factors without adding any new interpretable factors. We 10 

therefore selected the 7-factor solution for the analysis below. 

3.2.2 Overview of EESI-TOF source apportionment  

An overview of the EESI-TOF source apportionment analysis is presented in this section, with the factors discussed in detail 

in Section 3.3. Figure 2a shows the time series of the seven EESI-TOF PMF factors (LABB1EESI, LABB2EESI, CS-OAEESI, 

PBOAEESI, MABBEESI, BSOAEESI, SMOAEESI) over the entire year, together with relevant AMS PMF factors, meteorological 15 

conditions, and other ancillary measurements. The retrieved factors are analyzed in terms of their composition, correlation 

with markers and relationship to offline-AMS factors retrieved over the same period. Figure 2b presents the factor mass spectra, 

with ions colored by number of nitrogen.  

Figures 3 to 5 show alternative representations of the factor mass spectra. Figure 3 presents the spectra as stacked histograms 

according to the chemical family, binned by the number of carbon atoms, with the vertical axis representing the relative signal 20 

intensity. We define 3 chemical families: CxHyNzOk, CxHyNz, and CxHyOz, with the latter further separated into five groups by 

atomic H:C ratios: H:C <1.1, 1.1-1.3, 1.3-1.5, 1.5-1.7 and >1.7. The factor mass spectra are also presented as Van Krevelen 

plots (atomic H:C vs. O:C ratio) in Figs. S6 and S7 for the POA and SOA factors, respectively. Points are sized by the fraction 

of each ion apportioned to the respective factor and colored by the number of carbon atoms, except in the case of CS-OAEESI, 

where the color scale denotes the number of nitrogen atoms.  25 

As evidenced from the previous section and Figs. 2 and 3, many of the dominant ions in the EESI-TOF PMF analysis are 

shared by multiple factors. Here, we utilize a cluster analysis to identify ions unique or nearly unique to a single factor or 

group of factors, as described in detail in Section 2.4. Figure 4 shows the results of this analysis as a clustergram. Colors denote 

the z-score of each factor / ion combination. Hierarchical agglomerative clustering was performed independently on (1) the z-

score profile of each ion across all factors (vertical axis) and (2) the factor profile across all ion z-scores (horizontal axis). The 30 

outcomes of these cluster analyses are represented as dendrograms on the vertical and horizontal axes, respectively. The ions 

are clustered based on having a similar z-score pattern across the factors and the resulting tree is shown on the left, colored 

subjectively to guide the eye. Clearly, the dendrogram divides the factors into three main groups: one group including CS-
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OAEESI, PBOAEESI, and LABB2EESI, a biomass burning group (LABB1EESI and MABBEESI), and a biogenic OA group 

(BSOAEESI and SMOAEESI). Key ions are defined as those having a z-score > 1.5 for a given factor. These ions are shown in 

Fig. 5 as stacked histograms binned by the number of carbon atoms, with colors denoting chemical family (CxHyN, CxHyNOz, 

and CxHyOz, with the latter further separated by the H:C ratio). The left column displays these ions in terms of their relative 

intensity within each factor profile, while the right column shows the number of identified ions. A full list of the identified key 5 

ions is given in Table S1. 

Overall, for all the EESI-TOF factors, the assigned ions exhibit systematic patterns supporting the above identification. Fig. 

6a and 6b show the mass defect, defined as the exact m/z minus the nearest integer m/z, as a function of m/z for the uniquely 

assigned ions for the seven factors. For several displayed factors, linear correlations or clusters of points are observed. Figure 

6a shows the majority of the distinguished molecules (defined as factor-specific ions) of LABB1EESI and CS-OAEESI factors 10 

spread tightly from m/z 100 to 400, while the factor of LABB2EESI clusters from m/z 300 to 400 with a few additional points 

from m/z 150 to 200. The mass defects of the LABB1EESI-factor-specific ions are lower than the CS-OAEESI - and LABB2EESI-

factor-specific ions, which indicates that there are more aromatic ions (with a lower H:C ratio) in the LABB1 factor. The slope 

for the LABB1EESI factor of 4.6*10-4 is consistent with addition of CH groups (theoretical slope 6*10-4). It is also consistent 

with the slope of the primary biomass burning source from a Zurich field campaign (with a slope of 4.9*10-4, Qi et al., 2019). 15 

Here, the slope of the CS-OAEESI factor is 6.4*10-4, while the slope of the CS-OA factor from the Zurich field campaign is 

8*10-4. As shown in Fig. 6b, the mass of the markers of the PBOAEESI factor spread from m/z 250 to 400 with a high mass 

defect. A general trend is that the mass defect value of the BSOAEESI factor is a slightly higher than of the SMOAEESI factor. 

Both the slopes of BSOAEESI (8.7*10-4) and SMOAEESI (7.0*10-4) are consistent with the addition of CHO functional groups 

(theoretical slope = 1*10-3).  20 

 

3.3 EESI-TOF source apportionment factors  

Cigarette smoke-related OA (CS-OAEESI) 

The CS-OAEESI time series lacks a clear seasonal trend. However, as shown in Fig. 2a, it correlates strongly with the EESI-

TOF nicotine ion (R=0.89). As a reduced nitrogen compound, nicotine likely forms a stable ion by abstracting a hydrogen 25 

from water, leading to the observed cation. The stacked histogram of the CS-OA factor (Fig. 3) is unique among the resolved 

factors in having strong contributions from the CHN family. Other significant contributions come from C6H10O5 and C8H12O6 

(Fig. 2b). As discussed above, these species are prevalent also in biomass combustion, and may occur in this factor due to 

combustion of biomass in the cigarette.  

Oxidized nitrogen (ON) species (CxHyOzN1 and CxHyOzN2) are significant in the CS-OAEESI factor, as shown in Fig. S6c. It is 30 

only slightly oxygenated, with an O:C ratio below 0.2, and has a high H:C ratio of approximately 1.9. The field measurements 

at the same site had identified a cigarette smoke factor with a spectral fingerprint similar to C10H14N2 (Qi et al., 2019; Stefenelli 

et al., 2019). As shown in Fig. 5, the factor-specific ions of the CS-OA factor from cluster analysis have high abundance of 

https://doi.org/10.5194/acp-2019-1165
Preprint. Discussion started: 10 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 12 

CHNO, CHN and a high H:C ratio (> 1.5), which is consistent with our discussion that the factor is primary and dominated by 

the nitrogen-containing species. 

 

Primary biological organic aerosol (PBOAEESI) 

The mass spectrum of the PBOAEESI factor is shown in Fig. 2b. Strong contributions from slightly oxygenated ions with high 5 

carbon number and high H:C ratios, such as C19H32O3, C18H30O3, C14H22O3, C16H26O2, C9H16O2, are consistent with fatty acids 

identified from plants (http://plantfadb.org) (Tervahattu et al., 2005; Schilling et al., 2016). As shown in Fig. 3, the overall 

mass spectrum of the PBOAEESI factor is shifted towards ions with higher carbon number (i.e., C12 to C20) relative to the other 

factors. Figure 4 shows that the ions with high z-score in PBOAEESI are mostly unique to this factor. These ions are 

characterized by high carbon number and high H:C ratio, as shown in Fig. 5. Of all the factors, only LABB2EESI (discussed 10 

below) has unique ions with a comparably high carbon number distribution, however, the factor-specific ions of these two 

factors are not overlapping Fig. 5).    

The PBOAEESI factor is observed throughout the year, with slightly higher contributions during summer (Fig. 2a, S9). PBOA 

typically consists of solid airborne particles derived from biological organisms, including microorganisms and fragments of 

biological materials such as plant debris and animal dander (Després et al., 2012). PBOA has been observed previously as a 15 

significant source of coarse aerosol organic matter (OM, aerodynamic diameter > 2.5 µm) in Switzerland (Després et al., 2012; 

Bozzetti et al., 2016; Vlachou et al., 2018). The most frequently occurring biopolymer in terrestrial environments is cellulose, 

as around 50 % of dry weight cellulose is from leaves (Sánchez-Ochoa et al., 2007; Jaenicke, 2005). Atmospheric “free 

cellulose” has been determined as a proxy for plant debris. As shown in Fig. 2a, the time series of PBOAEESI is similar to the 

one of cellulose (R=0.83), although the number of cellulose measurements is limited to only 12 filters. Nevertheless, like the 20 

factor mass spectrum this correlation is consistent with the assignment of this factor to PBOA.  

We also considered cooking-related emissions as an alternative assignment for the PBOAEESI factor. Viewed broadly, these 

two emissions sources are somewhat similar in that they both have strong contributions from fatty acids, which are the salient 

features of the PBOAEESI mass spectrum. Indeed, a COAAMS factor is resolved, but no COA is retrieved from the EESI-TOF 

dataset despite previous studies identifying online cooking emissions in EESI-TOF data during summer and winter at the same 25 

site. However, offline-AMS analyses have previously shown COA to have a low extraction efficiency (Daellenbach et al., 

2016), resulting in low contribution in the EESI-TOF dataset. Further, the highest COAAMS concentrations occur during the 

period of 14 April – 08 May, during which no EESI-TOF data is available. Without this strong temporal feature, COA may 

contribute too little to the variability of the EESI-TOF dataset to be resolved. A detailed comparison of the retrieved PBOAEESI 

profile with previously obtained EESI-TOF COA factors shows that dominant PBOAEESI ions are different from the major 30 

components of cooking-related EESI-TOF factors obtained from source apportionment of online summer and winter mass 

data, e.g. C16H30O3, C18H34O2 (Stefenelli et al., 2019; Qi et al., 2019). Further, we note that the time series of the PBOAEESI 
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and COAAMS factors are not well correlated, suggesting different sources and thus a unique source for PBOAEESI unrelated to 

cooking emissions.  

 

Less aged biomass burning factors (LABB1EESI and LABB2EESI) 

Two factors were attributed to relatively fresh biomass burning emissions, denoted here as less aged biomass burning type 1 5 

and 2 (LABB1EESI and LABB2EESI, respectively). LABB1EESI displays many characteristics that are similar to primary or 

slightly aged wood burning emissions from previous EESI-TOF and AMS source apportionment studies. The time series of 

the LABB1EESI factor is correlated with the BBOAAMS factor (R=0.6, Fig. 2a). LABB1EESI also correlates with the C6H10O5 ion 

measured by the EESI-TOF (R=0.43), corresponding to levoglucosan and its isomers, which are well-known tracers of biomass 

combustion. LABB1EESI shows a pronounced yearly cycle with high concentration during both winters, consistent with 10 

previous studies identifying biomass burning as a major source of wintertime OA in Zurich and central Europe (Crippa et al., 

2013a; Crippa et al., 2014; Bozzetti et al., 2016). The factor profile is dominated by the ions of C6H10O5 and C8H12O6 as shown 

in Fig. 2b, similar to fresh wood burning emissions resolved by source apportionment of online EESI-TOF data (Qi et al., 

2019). Although the EESI-TOF provides only a molecular formula and not structural information, we note that the dominant 

contribution of a very small number of ions (i.e., C6H10O5 and C8H12O6) to the factor profile suggests that these ions result 15 

from a process such as cellulose pyrolysis, which gives rise to a relatively small number of discrete major products (including 

levoglucosan) as opposed to oxidative processing, which is characterized by more complex branching pathways and thus a 

broader distribution of chemically related compounds (e.g. homologous ion series). As a result, the C8H12O6 ion is likely also 

a pyrolysis product or other primary emission and not, for example, MBTCA (3-methyl-1,2,3, -butanetricarboxylic acid) which 

is an important product of a-pinene oxidation. Figure 3 and S6 show that, in addition to the strong contributions from C6H10O5 20 

and C8H12O6, LABB1EESI is unique among the retrieved factors in having a higher fractional signal from ions with low H:C 

value. This trend is amplified in the key ions identified from the clustergram analysis (Fig. 4), as shown in Fig. 5, where (aside 

from C6H10O5 and C8H12O6), the ions unique to LABB1EESI consist almost entirely of ions with H:C < 1.5. This contrasts 

sharply with the other factors, where ions with low H:C are rare. The low H:C may indicate more aromatic character because 

combustion origins of primary OA and / or oxidation products of aromatics, which may include significant contribution from 25 

ring-opening reactions. 

The LABB2EESI factor is enhanced during the second winter only, while concentrations during the first winter are 

indistinguishable from those during summer. Concentrations begin to increase in September, and continue increasing 

throughout the rest of the year. Because the filter samples were measured in random sequence, this does not reflect an artifact 

of the offline-EESI measurement system, such as a drift in EESI-TOF performance or gradual contamination of the aerosol 30 

generation system. It is therefore likely that this time series represents a real feature of the aerosol composition. The scatter 

plots (Fig. S8) show that the sum of the LABB1EESI + LABB2EESI factors has a higher correlation with BBOAAMS than 

LABB1EESI alone. The mass spectrum of LABB2EESI is dominated by C6H10O5 and C8H12O6, with high contributions of C19-
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C21 ions (14 % to the factor). This is demonstrated by the cluster analysis (Fig. 5, Table S1), which indicates that the factor-

specific ions with C19 and C21 are predominantly in this factor. The Van Krevelen plot (Fig. S6b) shows that this factor is 

dominated by ions with a high H:C ratio (above 1.7, Fig. 5), low O:C ratio (below 0.25) and high carbon number, which is 

consistent with our identification that the factor is likely from primary emissions (Bertrand et al., 2018; Elser et al., 2016).  

 5 

More aged biomass burning OA (MABBEESI) 

The time series of MABBEESI and WOOAAMS are strongly correlated (Fig. 2a, R=0.85). Both also have a strong correlation 

with the secondary aerosol component NH4
+ (R = 0.7). These correlations suggest that MABBEESI is significantly influenced 

by SOA. However, a strong contribution from C6H10O5 is also observed, suggesting that the factor also contains primary 

emissions, although this POA species comprises a substantially lower fraction of the total factor than in LABB1EESI and 10 

LABB2EESI. As also shown in Fig. 2b, major components of the MABBEESI mass spectrum (include.g., C6H10O5, C7H8O5, 

C9H16O4, and C8H12O6) are similar to those in mass spectra of aged biomass burning emissions retrieved from smog chamber 

experiments (Bertrand et al., submitted) and MABB factors from source apportionment of online EESI-TOF data from a winter 

study in Zurich (Qi et al., 2019). Figure S11 shows the distinct low relative contribution of C6H10O5 and C8H12O6 ions to the 

MABBEESI factor.  15 

Figure 7 shows that the factor-specific ions of the MABBEESI factor are classified into two distinct populations (Fig. 6b), with 

lower H:C and higher O:C ratio on the one hand and higher H:C and lower O:C ratio on the other hand. These two populations 

are consistent with the stacked histogram of MABB shown in Fig. 5. The lower mass defect population with lower H:C ratio 

is consistent with phenol / cresol oxidation enriched with C6 / C7 ions which are known as important biomass burning SOA 

precursors (Burns et al., 2016). The higher mass defect population with higher H:C ratios was composed of CHON and CHO 20 

group ions. Furthermore, phenol SOA has been shown to have a low relative response factor (RRF) in EESI-TOF, indicating 

an underestimation of these ions (Lopez-Hilfiker et al., 2019).  

 

  

Biogenic secondary organic aerosol (BSOAEESI) and summer mixed oxygenated organic aerosol (SMOAEESI) 25 

Both BSOAEESI and SMOAEESI factors show elevated concentrations in summer and have negligible contributions from 

levoglucosan (C6H10O5). The BSOAEESI factor exhibits a high contribution during warm seasons, spring and summer, but is 

near zero during winter (Fig. 2a). The time series of the SMOAEESI factor also shows an elevated contribution in summer, but 

differs from BSOAEESI in that it also has non-zero contribution in winter. Figure S10 (Fig. S12) shows the correlation of the 

three factors with the ambient temperature. While the SMOAEESI factor does not show a clear dependency on temperature, 30 

BSOAEESI increases exponentially with temperature (y = 1.2478e0.1581x), consistent with the known relationship for terpene 

emissions and biogenic aerosol in terpene-dominated regions. While SOOAAMS stems largely from biogenic precursors, this 

factor likely includes also a smaller proportion of compounds from other sources, whereas BSOAEESI represents rather pure 

biogenic SOA. 
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Figure 2b shows that the ions with the highest signal in BSOAEESI are C7H10O5, C8H12O5, C9H14O5, C10H16O5, and C10H16O6, 

while other ions, i.e. C14H22O5, C15H22O5, C15H24O5, C15H22O6, are tentatively identified as sesquiterpene oxidation products. 

This differs slightly from SMOAEESI, where C8H12O4, C9H14O4, C9H16O5, C10H16O4, and C10H16O5 show the strongest signals. 

Figure 3 shows that the BSOAEESI factor contains more organic nitrogen species than the SMOAEESI factor. Figure S7b and 

S7c show Van Krevelen plots for these two factors. BSOAEESI has a higher O:C ratio than SMOAEESI (1-1.2 vs. 0.4-0.6). The 5 

two factors are compared in more detail in Fig. 5, with the factor-specific ions. The range of H:C ratios is between 1.1 and 1.5 

for the marker ions in both factors (except for the CHNO family). The carbon numbers of factor-specific ions in BSOAEESI 

factor are spread from C8 to C21. The high C numbers are consistent with the presence of sesquiterpene oxidation products 

and terpene dimers. The SMOAEESI factor mostly with less than 10 carbon atoms (C7, C8, C9 and C10) likely indicates 

fragmentation products from terpene oxidation in the gas phase followed by condensation after oxidation of light aromatics 10 

via ring opening. This is consistent with our temperature comparison above that BSOAEESI factor is likely SOA from pure 

biogenic emissions, SMOAEESI factor is likely mixed and regional. 

Figure 8 compares these factor mass spectra with a factor dominated by terpene SOA (“Daytime SOA2, Daytime SOA1”) 

derived from PMF analysis of a summer field campaign at the same site in Zurich, as well as a mass spectrum from field 

measurements during spring in Hyyttiala, Finland, located in the remote boreal forest (Stefenelli et al., 2019; Qi et al., 2019; 15 

Pospisilova et al., submitted). This comparison shows the BSOAEESI factor and the SMOAEESI factors to be qualitatively similar 

to terpene-derived SOA. Additionally, the terpene-derived biogenic SOA has already been identified as a major summertime 

aerosol source in Central Europe (Zhang et al., 2018; Claeys et al., 2007; Ng et al., 2007; Canonaco et al., 2015; Daellenbach 

et al., 2017).  

 20 

3.4 EESI-TOF and AMS comparison  

For the comparison of EESI-TOF and AMS results, no relative sensitivity corrections were applied to the EESI-TOF data, 

although it is known that compound-dependent differences exist (Lopez-Hilfiker et al., 2019). Figure 9a shows the total ion 

signal (ag s-1) measured by the EESI-TOF as a function of the OA concentration measured by the AMS, with the points colored 

by date. Agreement is generally good except during winter, where the ratio of EESI-TOF to AMS is lower. This corresponds 25 

to high fractional contributions from the EESI biomass burning factors, especially the SOA-dominated MABBEESI. The 

apparently reduced EESI-TOF response is thus likely driven by the lower EESI-TOF sensitivity to SOA from light aromatics 

compared to terpenes (Lopez-Hilfiker et al., 2019). Figure 9b shows the mass flux of EESI-TOF SOA signal (MABB + BSOA 

+ SMOA) as a function of AMS SOA mass, colored by date, while Fig. 9c shows the comparison between EESI-TOF POA 

and AMS POA, correlating well with each other. Similar to Fig. 9a, the SOA-dominated period toward the winter exhibits a 30 

lower relative sensitivity for the EESI-TOF than the terpene-dominated summer season. 

Figures 9d and 9e show the O:C and H:C atomic ratios, respectively, for the EESI-TOF versus those of the AMS. The estimated 

O:C ratios by the EESI-TOF (around 0.3-0.45, again with no ion-dependent response factors applied) are systematically higher 
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than those measured by the AMS (around 0.2-0.3). This bias is similar to that observed in online data for winter and summer 

aerosol in Zurich (Stefenelli et al., 2019; Qi et al., 2019). On the other hand, the H:C ratios of these two instruments show fair 

consistency with values around 1.5 for the EESI-TOF and AMS analyses. This is not consistent with our observation for 

summer and winter aerosol in Zurich and for aging experiments of wood burning emissions in an environmental chamber, 

where all measured H:C ratios were higher for the EESI-TOF than for the AMS. Note also that, unlike the comparison of total 5 

EESI-TOF and AMS signals, there are no seasonally-dependent differences in the measured H:C or O:C ratio. 

Figure 10 shows the stacked time series of the AMS PMF factors and EESI-TOF PMF factors. Also shown are pie charts of 

the mean EESI-TOF factor contributions (Fig. 10c) and the mean AMS factor contributions (Fig. 10d) over the entire 

measurement period. As discussed earlier, this apportionment specifically describes the WSOM fraction, as no WSOM-to-OM 

correction factors are applied.   10 

Overall, the sum of the primary factors of LABB1EESI (12 %) and LABB2EESI (6.5 %) contributes 18.5 % of the EESI-TOF 

signal and compares with the BBOAAMS factor (12 %). The fraction of secondary MABBEESI (20.3 %) factor is a bit lower than 

the WOOAAMS factor (22 %).  The source of CS-OAEESI contributes to 9.3 %, which must have contributions from some AMS 

factors, e.g. from wood burning-related and cooking. The secondary factors BSOAEESI (19.7 %) and SMOAEESI (9.9 %) 

contribute 29.6 % of the EESI-TOF signal compared to 37.6 % of the total apportioned mass for the AMS summer factor 15 

SOOA. The PBOAEESI factor exhibits the strongest difference, with 22.3 % in the EESI-TOF, while PBOA is not resolved at 

all in the AMS. Daellenbach et al. (2017) did not separate a PBOA factor in their AMS PMF analysis, neither unconstrained 

nor using the mass spectral signature from Bozzetti et al. (2016). Three methods (based on factor profiles, coarse OC and 

cellulose) were used to estimate the influence of PBOA in Bozzetti et al. (2016), reporting that offline measurement is with a 

factor of 3 to 10 times lower PBOA in the warm season. Here, the EESI-TOF measurement shows the advantage for measuring 20 

the samples at molecular level, enabling the separation of PBOAEESI and CS-OAEESI factors from PMF analysis.  

4 Conclusions 

In this study, we analyzed 86 filters collected at the NABEL monitoring station at Zurich Kaserne, an urban background site. 

These filters were collected for 24 hours each, approximately every 4th day throughout 2013, then measured by utilizing the 

offline-AMS method (water extraction followed by re-nebulization and measurement) to the EESI-TOF. It is the first offline 25 

work to characterize the secondary organic aerosol sources and composition using a new developed instrument extractive 

electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The increased chemical specificity of the EESI-TOF 

allows for additional, meaningful factors to be resolved relative to the AMS. 

Positive matrix factorization (PMF) analysis was conducted on the offline-EESI-TOF data, yielding seven factors describing 

water soluble organic material (WSOM): two less aged biomass burning factors (LABB1EESI and LABB2EESI) indicating a 30 

strong aromatic influence; cigarette smoke organic aerosol (CS-OAEESI, characterized by the contribution from nicotine); 

primary biological organic aerosol (PBOAEESI) identified by fatty acids from plants; more aged biomass burning (MABBEESI) 
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characterized by the key feature from wood burning chamber measurement, biogenic secondary organic aerosol (BSOAEESI) 

and summer mixed oxygenated organic aerosol (SMOAEESI) showing enhanced contribution from ions characteristic of 

monoterpene oxidation. The offline EESI-TOF PMF retrieved a PBOAEESI factor, separated less aged and more aged factors 

from biomass burning, and presented winter and summer dominated emissions respectively, features that are not possible for 

AMS PMF analysis. We performed cluster analysis of the EESI-TOF ions followed by correlation with the resolved factors, 5 

which identifies factor-specific ions of each factor. These characteristic ions represent potential markers for future studies. 

 

Overall, the EESI-TOF analysis was supported and corroborated by the AMS PMF analysis. This work highlights the potential 

of offline, highly chemically-resolved data provided by an EESI-TOF, for identification of the key sources over a long time 

period. 10 
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Figures 

 

 
Fig.1 Factor profiles for the six-factor solution for AMS results with HOAAMS and COAAMS constrained by a=0.1. The total signal 
of each factor is normalized to unity, and the y-axis presents the fractional contributions of the variables to the total signal of the 5 
factor. (HOAAMS: Hydrocarbon OA, COAAMS: Cooking-related OA, BBOAAMS: Biomass burning OA, WOOAAMS: winter 
oxygenated OA, SOOAAMS: summer oxygenated OA, SCOAAMS, sulfur-containing oxygenated OA). 
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b) 

Fig. 2. (a) Time series of the EESI-TOF PMF analysis for the 7-factor solution, along with ancillary data. (b), Corresponding factor 
profiles. For all y-axes, EESI-TOF data are shown as mass flux (ag s-1), AMS data are shown in µg m-3, and other units are given.  
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  5 
Fig. 3 Stacked histogram binned by carbon number of ions, showing the apportioned intensity of each bin to each factor. Colors 

correspond to 7 families. 
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Fig. 4 Standardized matrix of individual EESI-TOF ions vs. EESI-TOF PMF factors, colored by z-score. Ions and factors are sorted 5 
according to the results of their respective hierarchical clustering analysis; the resulting dendrograms are shown on the respective 
axes. The color of the compounds’ groups in the dendrogram are chosen to make groupings convenient to read (dendrogram colors 
are chosen arbitrarily to aid the eye). 
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Fig. 5 Stacked histogram binned by carbon number and colored by chemical family of key ions derived from clustergram analysis 
of factor mass spectra. Two representations are shown, with the stacked height denoting ion intensity (left column) or number of 
identified ions (right column).  
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Fig. 6 Mass defect plots of factor-specific ions (identified from the cluster analysis) for selected EESI-TOF POA (a) and SOA (b) 
factors.   
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Fig. 7 Mass defect plot of factor-specific ions for the MABBEESI factor colored by nitrogen number, sized by H:C ratio (left) and O:C 
ratio (right).  
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Fig. 8 Comparison of the offline summer factor profiles with mass spectra from the Hyytiala field campaign and the online summer 
factors. The total signal of each factor is normalized to unity. 
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Fig. 9 Comparison of EESI-TOF and AMS. Total EESI-TOF mass flux (ag s-1) as a function of AMS OA, points are colored by date 
(a); total EESI-TOF SOA mass flux (ag s-1) as a function of AMS SOA, points are colored by date (b); total EESI-TOF POA mass 
flux (ag s-1) as a function of AMS POA, points are colored by date (c); The EESI-TOF and AMS comparison in terms of O:C (d) and 
H:C (e), points are colored by date. 5 
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Fig. 10 Comparison between AMS factors and EESI factors: time series of the concentrations AMS PMF factor (a) and mass flux of 
EESI PMF factor (b). Pie charts of source apportionment results from the EESI (c) and AMS (d).  
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